本文共 1836 字,大约阅读时间需要 6 分钟。
fig, (ax1, ax2,ax3) = plt.subplots(3,1, figsize=(15,10),facecolor='white')
plt.subplots_adjust(hspace=0.5) mpf.candlestick_ochl(ax1, k_test_data_values, width=1.0, colorup = 'r', colordown = 'g') ax1.set_title(test_code) ax1.set_ylabel('Price') ax1.grid(True) x_list=n_division(len(k_test_data),5) ax1.set_xticks(x_list) ax1.set_xticklabels(k_test_data.ix[x_list,'str_date']) mpf.candlestick_ochl(ax2, find_data_values, width=1.0, colorup = 'r', colordown = 'g') ax2.set_title(find_code) ax2.set_ylabel('Price') ax2.grid(True) x2_list=n_division(len(find_data),5) ax2.set_xticks(x2_list) ax2.set_xticklabels(find_data.ix[x2_list,'str_date']) """收盘价数据""" two_closes=pd.DataFrame() two_closes['test']=k_test_data['dealed_close'].values two_closes['find']=find_data['dealed_close'].values two_closes.reset_index(drop=True,inplace=True) two_closes.plot(ax=ax3) ax3.text(cnt//2,0.5,'similarity:'+str(result.ix[find_idx,'ratio']),family='monospace',fontsize=10) plt.show()fig,ax1=plt.subplots(1,figsize=(10,8))
plot_data[[bench_column_name]].plot(c='r',ax=ax1) plot_data[ref1_columns_name].plot(c='b',ax=ax1) plot_data[ref2_columns_name[0:3]].plot(c='g',ax=ax1) plot_data[ref2_columns_name[3:6]].plot(c='y',ax=ax1) ax1.set_title(bench_mark+'_'+begin_date+'_'+over_date+" similar k lines") #ax1.set_xticklabels(x_labels) ax1.set_xlabel('date') ax1.set_ylabel('net') fig.savefig('pdf/'+'_new_algo_'+prefix+'_'+bench_mark+'_'+begin_date+'_'+over_date+'.pdf',dpi=1000,bbox_inches='tight') plt.show()import matplotlib.mlab as mlab
import matplotlib.pyplot as plt labels=[u'big_big_down',u'big_down',u'down',u'up',u'big_up',u'big_big_up'] X=test_result[-1].reshape(-1,).tolist() fig = plt.figure() plt.pie(X,labels=labels,autopct='%1.2f%%') #画饼图(数据,数据对应的标签,百分数保留两位小数点) plt.title(code+'_lstm_prob') plt.savefig(code+'_lstm_prob'+'.pdf') plt.show()