博客
关于我
画多个图及相关细节总结
阅读量:312 次
发布时间:2019-03-03

本文共 1836 字,大约阅读时间需要 6 分钟。

            fig, (ax1, ax2,ax3) = plt.subplots(3,1, figsize=(15,10),facecolor='white')

            plt.subplots_adjust(hspace=0.5)
            mpf.candlestick_ochl(ax1, k_test_data_values, width=1.0, colorup = 'r', colordown = 'g')
            ax1.set_title(test_code)
            ax1.set_ylabel('Price')
            ax1.grid(True)
            x_list=n_division(len(k_test_data),5)
            ax1.set_xticks(x_list)
            ax1.set_xticklabels(k_test_data.ix[x_list,'str_date'])
            mpf.candlestick_ochl(ax2, find_data_values, width=1.0, colorup = 'r', colordown = 'g')
            ax2.set_title(find_code)
            ax2.set_ylabel('Price')
            ax2.grid(True)
            x2_list=n_division(len(find_data),5)
            ax2.set_xticks(x2_list)
            ax2.set_xticklabels(find_data.ix[x2_list,'str_date'])
            """收盘价数据"""
            two_closes=pd.DataFrame()
            two_closes['test']=k_test_data['dealed_close'].values
            two_closes['find']=find_data['dealed_close'].values
            two_closes.reset_index(drop=True,inplace=True)
            two_closes.plot(ax=ax3)
            ax3.text(cnt//2,0.5,'similarity:'+str(result.ix[find_idx,'ratio']),family='monospace',fontsize=10)
            plt.show()

fig,ax1=plt.subplots(1,figsize=(10,8))

plot_data[[bench_column_name]].plot(c='r',ax=ax1)
plot_data[ref1_columns_name].plot(c='b',ax=ax1)
plot_data[ref2_columns_name[0:3]].plot(c='g',ax=ax1)
plot_data[ref2_columns_name[3:6]].plot(c='y',ax=ax1)
ax1.set_title(bench_mark+'_'+begin_date+'_'+over_date+" similar k lines")
#ax1.set_xticklabels(x_labels)
ax1.set_xlabel('date')
ax1.set_ylabel('net')
fig.savefig('pdf/'+'_new_algo_'+prefix+'_'+bench_mark+'_'+begin_date+'_'+over_date+'.pdf',dpi=1000,bbox_inches='tight')
plt.show()

        import matplotlib.mlab as mlab

        import matplotlib.pyplot as plt
        labels=[u'big_big_down',u'big_down',u'down',u'up',u'big_up',u'big_big_up']
        X=test_result[-1].reshape(-1,).tolist()
        fig = plt.figure()
        plt.pie(X,labels=labels,autopct='%1.2f%%') #画饼图(数据,数据对应的标签,百分数保留两位小数点)
        plt.title(code+'_lstm_prob')
        plt.savefig(code+'_lstm_prob'+'.pdf')
        plt.show()

你可能感兴趣的文章
mysql如何记录数据库响应时间
查看>>
MySQL子查询
查看>>
Mysql字段、索引操作
查看>>
mysql字段的细节(查询自定义的字段[意义-行列转置];UNION ALL;case-when)
查看>>
mysql字段类型不一致导致的索引失效
查看>>
mysql字段类型介绍
查看>>
mysql字段解析逗号分割_MySQL逗号分割字段的行列转换技巧
查看>>
MySQL字符集与排序规则
查看>>
MySQL字符集乱码
查看>>
mysql字符集设置
查看>>
mysql存储IP地址的数据类型
查看>>
mysql存储中文 但是读取乱码_mysql存储中文乱码
查看>>
MySQL存储引擎
查看>>
MySQL存储引擎
查看>>
MySQL存储引擎--MYSIAM和INNODB引擎区别
查看>>
Mysql存储引擎(1):存储引擎体系结构和介绍
查看>>
Mysql存储引擎(2):存储引擎特点
查看>>
MySQL存储引擎--MyISAM与InnoDB区别
查看>>
mysql存储总结
查看>>
mysql存储登录_php调用mysql存储过程会员登录验证实例分析
查看>>