博客
关于我
画多个图及相关细节总结
阅读量:312 次
发布时间:2019-03-03

本文共 1836 字,大约阅读时间需要 6 分钟。

            fig, (ax1, ax2,ax3) = plt.subplots(3,1, figsize=(15,10),facecolor='white')

            plt.subplots_adjust(hspace=0.5)
            mpf.candlestick_ochl(ax1, k_test_data_values, width=1.0, colorup = 'r', colordown = 'g')
            ax1.set_title(test_code)
            ax1.set_ylabel('Price')
            ax1.grid(True)
            x_list=n_division(len(k_test_data),5)
            ax1.set_xticks(x_list)
            ax1.set_xticklabels(k_test_data.ix[x_list,'str_date'])
            mpf.candlestick_ochl(ax2, find_data_values, width=1.0, colorup = 'r', colordown = 'g')
            ax2.set_title(find_code)
            ax2.set_ylabel('Price')
            ax2.grid(True)
            x2_list=n_division(len(find_data),5)
            ax2.set_xticks(x2_list)
            ax2.set_xticklabels(find_data.ix[x2_list,'str_date'])
            """收盘价数据"""
            two_closes=pd.DataFrame()
            two_closes['test']=k_test_data['dealed_close'].values
            two_closes['find']=find_data['dealed_close'].values
            two_closes.reset_index(drop=True,inplace=True)
            two_closes.plot(ax=ax3)
            ax3.text(cnt//2,0.5,'similarity:'+str(result.ix[find_idx,'ratio']),family='monospace',fontsize=10)
            plt.show()

fig,ax1=plt.subplots(1,figsize=(10,8))

plot_data[[bench_column_name]].plot(c='r',ax=ax1)
plot_data[ref1_columns_name].plot(c='b',ax=ax1)
plot_data[ref2_columns_name[0:3]].plot(c='g',ax=ax1)
plot_data[ref2_columns_name[3:6]].plot(c='y',ax=ax1)
ax1.set_title(bench_mark+'_'+begin_date+'_'+over_date+" similar k lines")
#ax1.set_xticklabels(x_labels)
ax1.set_xlabel('date')
ax1.set_ylabel('net')
fig.savefig('pdf/'+'_new_algo_'+prefix+'_'+bench_mark+'_'+begin_date+'_'+over_date+'.pdf',dpi=1000,bbox_inches='tight')
plt.show()

        import matplotlib.mlab as mlab

        import matplotlib.pyplot as plt
        labels=[u'big_big_down',u'big_down',u'down',u'up',u'big_up',u'big_big_up']
        X=test_result[-1].reshape(-1,).tolist()
        fig = plt.figure()
        plt.pie(X,labels=labels,autopct='%1.2f%%') #画饼图(数据,数据对应的标签,百分数保留两位小数点)
        plt.title(code+'_lstm_prob')
        plt.savefig(code+'_lstm_prob'+'.pdf')
        plt.show()

你可能感兴趣的文章
nacos配置新增不成功
查看>>
nacos配置自动刷新源码解析
查看>>
Nacos集群搭建
查看>>
nacos集群搭建
查看>>
nacos集群节点故障对应用的影响以及应急方法
查看>>
nagios安装文档
查看>>
nagios服务端安装
查看>>
name_save matlab
查看>>
Nami 项目使用教程
查看>>
NAND NOR FLASH闪存产品概述
查看>>
nano 编辑
查看>>
NASA网站曝严重漏洞,或将沦为黑客钓鱼网站?
查看>>
Nash:轻量级、安全且可靠的脚本语言
查看>>
NAS、SAN和DAS的区别
查看>>
NAS个人云存储服务器搭建
查看>>
nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
查看>>
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,解决动态域名解析难题
查看>>
NativePHP:使用PHP构建跨平台桌面应用的新框架
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>